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1. Introduction In this paper we present multiprocessor algorithms for solving
large systems of linear equations where the coefficient matrix is sparse and unsym-
metric. VLSI circuit simulation, structural analysis, partial differential equations,
and chemical analysis are few examples of applications requiring the solution of

such systems of equations.

The algorithms described in the paper are designed for a shared-memory,
MIMD model for parallel computation, in which the total memory address space is
accessible uniformly to all parallel units. This computational model provides syn-
chronization mechanisms to allow multiple updates. If multiple updates are aimed

at the same memory cell, the penalty paid is a short delay in access time.

Given is a system of linear equations:

Az=0b (1.1)
where the coefficient matrix, A, is large and sparse. This paper concentrates on a
direct parallel solution method for solving (1.1) by factoring A into lower (L) and
upper (U) triangular matrices respectively.

A= LU (1.2)
The solution is then obtained by forward and back substitution steps:

Ly = b (1.3)

Uz =y (1.4)

To solve (1.1), a sparse matrix technique based on the following principles is used:

a) Only the non-zero elements of A are stored.



b) Arithmetic operations are performed oa non-zero elements only.

¢) During the decomposition fili-in3 are generated, i.e. new pon-zero elements
are created in the process of generating zeros below the diagonai. The

number of fill-ins is kept small.

The three problems stated above are all related. Even though oniy non-
zeros need to be stored, fill-ins must be stored in the matrix structure. Therefore,
minimization of fill-in will resuli in minimization of the arithmetic operations and
storage as well. One must find a permutation of the sparse matrix A to satisfy the
above goal. The problem of finding an optimum permutation to minimize fill-in is
NP-complete {1}, and many heuristic algorithms have been developed to obtain
pear optimal solutions for this problem. Most of these beuristics find optimum
permutations of the matrix which minimize fill-in in sequential solution process
while they often minimize the amount of possible parallel work in parallel process.
Therefore an ordering, or pivoting strategy to minimize some combination of fill-in
and parallel execution time must be determined. The design of a heuristic algo-
rithm which identifies a set of pivots to be processed in paralle! while minimizing
fill-ins is de.scribed in detail in [2], [3], and [4]. Other parallel pivoting strategies
have also been suggested [5], (8], (7], [8], [9], [10], [11], [12], [13]. In this paper we
concentrate on parallel implementation of sparse LU decomposition procedure
using the parallel pivoting technique described in [2], [3], and [4]. In this imple-

mentation pivots are tested for numerical stability as well as for sparsity.

A brief description of the parallel pivoting algorithm is given in section 2.
Section 3 describes the storage structure used in the implementation. In section 4
the various parallel procedures to perform steps of triangularization are described
and analyzed. In section 5 we represent actual performance results from the

parallel implementation of the sparse LU decomposition on the HEP computer.



Finally, in section € some coacluding remarks are presented.

2. Parallel Pivotiag Algorithm The Triangulation of an nXn wmatrix

A = {a,] can be described by the following procedure.
for K = 1,2,....n=1 and for each a;,#0

d]‘k - —LL ]>k (2.1)
Ok

For each pair a;-ky # 0

8; « 8, = 8 X ay, i>k, j>k (2.2)

In (2.2) if o, =0 but a;-a, #0, a fill-in is generated. It is obvious that if we have
sufficient processors, the divide operations (2.1) for each column K can be done in
parallel. Also, for each k the update operation (2.2) for all pairs a,;-a;; #0 can be
done in parallel. Our experience in employing this approach has indicated that
the sparsity of application matrices leaves parallel processes with little work to
perform if only reduction for a single pivot is done in parallel [14]. During Sparse
LU decomposition it is possible to perform computation on many diagonal ele-
ments simultapeously. In parallel LU decomposition of general unsymmetric

sparse matrices several key issues must be considered:

a) Parallelism and fill-in are two competing issues and a balance between the
two must be obtained. In other words minimizing fill-ins results in limited
parallelism, and maximizing parallelism results in uncontrolled generation of

fill-ins.

b) A test for numerical stability of pivots must be made to ensure the accuracy

of the solution process.

¢) In applications where the sparse linear system must be solved repeatedly, it

must be possible to decompose structurally identical matrices using the



information produced for the first decomposition of such matrix.
d) A storage structure suitabie l'or paralilel processing must be determined.

A heuristic algorithm has been designed in [2], [3], [4] which identifies parallel
pivot candidates and allows the matrix to be reduced for multiple pivots simul-
taneously while it mioimizes fill-ins. It is a dynamic algorithm which can be
applied at any point in the decomposition phase and does not require a preorder-
ing of the input matrix. It allows pivots to be tested for numerical stability.
Therefore at any point during the reduction, if numerically unstable pivots are
encountered, unsymmetric permutations can be performed. The algorithm can
then be applied to the remaining unreduced submatrix. This technique also allows
structurally identical matrices to be decomposed using the information generated
during the decomposition of the first matrix. In subsequent decompositions a test
for numerical stability should be made. If the test is not satisfied, an off-diagonal
permutation can be made and the parallel pivoting algorithm can be applied anew

to the unreduced matrix only.

Here we will concentrate on parallel implementation of this algorithm and
will not go into a detailed description of its design. A complete and detailed
description and analysis is available in [2], [3], [4]. In what follows a brief descrip-
tion of the algorithm and the required steps is given. The procedure to implement

each step is presented in detail in section 4.

Pivots that can be processed in parallel are related by a compatibility

relation and are grouped in a compatible. In other words pivots Py, Py,

Py, are
compatible and can be processed in parallel if and only if elements
8, 8;, 83, ag;, 8, a; are all zero. The collection of all maximal compatibles

(15), {16] yields different maximum sized sets of pivots that can be processed in

parallel. Several methods for generating maximal compatibles exist and they are



all based on the construction of an implication (incompatible) table. The incom-
patible table gives informatioa about pairs of incompatible pivots. Productior of
all maximal compatibles iuvoives a binary tree search and is exponertial in the
order of the matrix. This problem is solved by a technique which generates an
"ordered incompatible table” based on the Markowitz number [17] of the pivot can-
didates.

The Markowitz criterion is a heuristic for minimizing fill-ins in sparse
matrices in sequential programming. It is based on the fact that at each step k,
the maximum number of fil-ins generated by choosing a,; as pivot is
(r;=1)(¢c;=1), where (r;—1) and (r;=1) are the number of nonzeros other than g
in row ¢ and column j of the reduced matrix. Markowitz selects as pivot eslement
at step k, the element which minimizes (r,~1)(¢c,—~1), which is called the Mar-

kowitz number of element a,;.

An "ordered Compatible” can then be produced directly from the
ordered incompatible table without the need to search the tree. The resulting set
of compatible pivots has the property of generating few fills. The beuristic algo-

rithm combines the idea of an ordered compatible with a limited binary tree

search to generate several sets of compatible pivots in linear time. An
elimination set to reduce the matrix is generated and selected on the basis of a
minimum Markowitz sum number (sum of the Markowitz number of pivots in a
compatible). Several parameters are introduced to trade off parallelism for fill-in
which can be controlled by the program. In summary the algorithm requires the

following steps:

1. An incompatible table is constructed by scanning the sparse matrix.

2. Pivots are ordered according to their Markowitz numbers.



3. A limited binary trce search produces several starting sets at a given

level (ULEVEL) of the tree.

4. An ordered compalsble 13 generated for each starting set at ULEVEL

from the corresponding ordered incompatsble table.

5. The ordered compatible of maximum size and minimum Markowitz sum

is selected as the elimsnation set to reduce the matrix.

6. A set of program parameters can be applied to the resulting

elimination set to further minimize fill-in.

3. Storage Structure The basic global data structure used in the parallel LU
decomposition program is described below. Each element of the matrix structure
consists of five fields: the real numerical value, the row index, the column index, a
pointer to the next element in the row, and a pointer to the next element in the
column. The incompatible table is represented by an array of dimension n, order
of the matrix, with elements of the array imptbl being sets of n elements each.
Each set corresponds to a column of the table. Column s of the table, imptbl;,
holds the incompatible information for pivot ¢ of the matrix. Note that the paral-
lel pivoting algorithm considers only the diagonal elements as pivot candidates.
Unsymmetric permutations are possible in between parallel pivoting steps.

compst holds the resulting elimination set.



Type Definition:
plr= matpac; pointer type to a matrix element.
matpac = record
val :real; real value.
row :integer; row index.
column : integer; column index.
nc :plr; pointer to next element in row.
nr :ptr;  pointer to next element in column.
end;
rocl=(r,c); row aupd column list.
sets=set of 1..n; set type
Variables: ;
A: array(rocl,1..n)of ptr; matrix structure.
nofr,nofc: array(1..n)of integer; number of nonzeros
in row and column.
imptbl: array(l..n)of sets; incompatible table.
compst: sels; elimination set.

4. Parallel LU Decomposition In order to write efficient parallel programs
one must consider the underlying parallel architecture to which the program is to
be applied. In an MIMD environment parallelism must be applied at the highest
possible level in the program in order to effectively exploit the underlying parallel
hardware. In our design and implementation we have used the idea of universal
parallelism due to Jordan (18], [19] which is based on writing parallel programs
assuming that all the parallelism needed by the programmer exists throughout the
program execution. A set of parallel programming constructs known as "the
Force™ implemented for several shared-memory MIMD computers [18], [19] are

used in the implementation of the algorithms presented in this paper.

A high level block diagram of the program is given below. The entire
LU Decomposition program is executed by NPROC processes. These processes
can be created by a driver routine. The parallel routines are specified by a Force-
call followed by a brief description of their function on each box. Therefore the

body of each Force subroutine is executed by NPROC processes in parallel. After




the program is completely execnted, the parallel processes are joined in the driver.

The flowchart consists of two major loops. parallel pivoting loop and sin-
gle pivoting loop. The parallel pivoting loop is executed as long as the program
can find compatibles of more than one pivot, otherwise the single pivoting loop is
executed. During parallel pivoting steps only diagonal elements are considered as
pivots and unsymmetric permutations are not permitted. In single pivoting steps
unsymmetric permutations are allowed and hence any matrix element can be con-
sidered as pivot.

In the remainder of this section we describe the parallel algorithms involved in the

LU Decompoasition program by stepping through the flowchart in the given order.

4.1. Parallel Sort A sorting routine is required to sort the pivots in decreasing
order of Markowitz number. The ordered list of pivots is used at several points in
the  parallel pivoting  algorithm: in the construction of an
ordered incompatible table, in the construction of a partial binary tree search, and
finally it is used to trade off parallelism for fill-in by discarding a fraction of com-
patible pivots with Markowitz number higher than a given threshold value in the

ordered list.

The sorting algorithm used for this purpose is the Batcher sort [20], [21].
Batcher's sorting scheme is somewhat like Shell's sort but, the comparisons are
made in a novel way so that no propagation of exchanges is necessary. The
amount of bookkeeping needed to control the sequence of comparisons is rather
large. All comparisons/exchanges specified by a given iteration can be done simul-
taneously. In the procedure below processes are prescheduled over a range of
indices and they perform the comparison/exchange operations in parallel. As can

be seen from the algorithm at each iteration we must compute the range of
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nonadjacent pairs for comparison. This is a rather large overhead but is per-
formed in parallel by processes [n between the iterations however, a large section

of sequential code is needed tc ad:ust the range of indices for the next iteration.
&

Procedure Batcher sort
Global t,p,q,r,d

Barrier !
t= [lognl]

p= 2(-1
g= 2!"1 r=0,d=p;
End barrier
while (p > 0) do
begin
Presched DO 2 i=1, n—d
(compute correct index)
g= (i=1)Vp
J=pq+r +3
if(j S (n=d)) then
compare and exchange;
End Presched DO
Barrier
if( p #¢ ) then
d=q-p
q=q/2
r=p
else
p= lp/2)
endif
End barrier
endwhile

It has been shown that with enough parallel operations, sorting is com-
pleted in 1/2 [log n] ([log n]+ 1) steps. The sequential work and the small critical
section used in implementation of the barrier construct will dominate the parallel

work unless n is very large.

! The semantics for Barrier construct are such that all processes pause when they reach the Barrier.
After all have arrived, one process executes the section of code enclosed by Barrier-End barrier pair. After
the singly executed code section is complete, all processes will resume execution after the End barrier.

2 Presched DO loop causes the body of the loop enclosed between it and the matching End Presched

DO to be executed in parallel for different values of i. Instances of the loop body must be independent for
different values of i.
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4.2. Parallel Inpair The incompatible table is constructed in this routine.
Fach column of this table correspoads to a pivot of the matrix and contaias the
list of pivots incompatible with the pivot under consideration. This information is
used in the construction of the partial binary tree search described in the next sec-
tion. Assume pivots are oumbered 1 to n corresponding to diagounal elements of
rows 1 through n of the matrix ordered with decreasing Markowitz number.
Column ¢ of the incompatible table corresponds to pivot number ¢ of the matrix.
Each column of the table can be constructed independently by a parallel process.
Parallel processes are prescheduled over a loop of indices (s) corresponding to
diagonal pivots of the matrix. Each process, say i, scans the row-column pair
corresponding to pivot 5. If a nonzero element a;; or a;; is encountered a mark for
pivot s is entered in row j of column + of the incompatible table, indicating pivot
7 is incompatible with pivot . No process synchronization is required since each
process is responsible for scanning row-column pairs of different diagonal elements
and updating the corresponding columns of the table. Figure 4.1.b shows the
ordered tncompatible table for the sparse matrix of Figure 4.1.a. The algorithm

can be described as:

Procedure /ncompatible table
Global imptb{{1..n] of set 1..n;
Global n,nrem ;
Presched DO i=nrem,n
scan row + for any nonzero a;;
if P; not in imptbi(s) then
add P, to imptbi(s)
scan col ¢ for any nonzero a
if P; not in imptbl(s) then
add P; to imptbl(s)
End Presched DO

The construction of the incompatible table requires scanning NZ nonzeros
of the matrix. As can be seen from the procedure the only set operations required

are addition of a new element to a set and a test for membership. These
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Pivots Ordered with Markowitz Number

Figure 4.1 a

1 2 3 4 5 6 7 8 9 10 11
1 X
2 X
3 X X X
4 X X
S | x X X
¢} X X
7 X X X X
8 X X X X
9 X X X X
10 X X X X X
11 1 x X X X X
Matrix Al
Pivot Ml\?:l;?:el:z Order

1 0 9

2 0 11

3 2 8

4 2 8

S 2 10

6 4 7

7 3 3

8 9 4

9 12 3

10 4 1

11 12 2
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1T | x

8 x| x

6 | x| x

10 | x v | x

T lx | x

3 X | x

4 X! x |x

5 X X

1 X X
2 X ]

9 11 8 6 10 7 3 4 5 1

Figure 4.1.b  Ordered Incompatible Table
operations are O{1), therefore the incompatible table can be comstructed in

O(NZ/NPROC) time with NPROC parallel processes.

4.3. Parallel Compset The procedure that produces the ordered compatibles
has two major parts. The first part generates several starting sets at a given level
(ULEVEL) of the binary search tree. The second part produces an

ordered compatible for each of the starting sets from the incompatible table.

The binary tree search is a systematic approach for extracting the maximal com-
patibles. Initially, it is assumed that all pivots are compatible. They are grouped
in one set consisting of all pivot (diagonal) elements. This set, S, will be at the
root of a binary tree, level zero. Next, the set of pivots incompatible with the
pivot of minimum Markowitz number, P;, obtained from the incompatible table,
imptbl; is used to split S into a left S, and a right S, set, constituting level one.
S, consists of all elements of its parent S except those incompatible with P;. S,
consists of the same elements as S except P, itself. At each level of the binary
tree sets are produced by splitting the parent set into left and right sets, taking
pivots in increasing order of Markowitz number from the ordered list of pivots to

split the sets. This process continues until we have produced all starting sets,
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SITEVEL=Y through SILEVEL — 3 at Jevel = ULEVEL. The partial binary tree
search for the example matrix of Figure 4.1 and for ULEVEL=3 is shown in Fig-
ure 4.2. As We can see eight startiag sets are produced for this level of the tree.
Note that set 5 and 8 are the same as their parent sct simply because the parent
set could not have been split for pivot number 10. Diflerent orderings of pivots for
splitting the nodes of the binary tree are considered in [2], [3], and [4].

In the second part of this procedure an ordered compatible is generated for
each of the starting sets. This is done by scanning the incompatible table
corresponding to each starting set in decreasing order of Markowitz number of
pivots in the starting set.

The incompatible table for a given starting set, S,, is the original table with those

rows and columns corresponding to pivots absent from S, eliminated.

For each starting set, S;, its corresponding incompatible table is scanned. Any

pivot P, whose corresponding column in the incompatible table, imptblp], is null is

added to the ordered compatible, compset;. In addition any pivot P; for which

imptblpln compset,= empty is also added to compset, since compset; does not con-

tain any pivots incompatible with P,. Finally the ordered compatible of maximum
size and minimum Markowitz sum is selected as the elimination set to reduce the
matrix. The ordered compatibles corresponding to the eight starting sets above
are given in Figure 4.3. Any of these sets can be selected to reduce the matrix in
parallel. Among these ordered compatibles compset;, compsets, and compasety are
of maximum size (5). The set with minimum Markowitz sum will tend to generate
fewer fill-ins. Therefore compset, or compsets, which ever is produced first, will

be selected as the elimsnation set.
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{1.2.3,4,5,6,7.8,9,10,11]

split for §

{1,3.4,5,6,7,8,9,10,11] (1,2,3.4,6,7.8,9,10,11]

split for 7 /\

(2,3,5,6,7,8,9,10,11] (2,3,4,5,6,8,9,10,11] [1,2,3,6,7,8,9,10,11] (1,2,3,4,6,8,9,10,11]

split for 10
[1,2,3,4,6,8,9,11]
2,3,5,6,7,8,9,11 (2,3,4,5,6,8,9,11]
[ ] (1,2,3,6,8,9,10,11]
[2,3,6,7,8,9,10,11] [2,3,6,8,9,11] :

(1.2,3,6,7,8,9,10,11]

Figure 4.2 Partial Binary Tree Search
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compeet, = (2.3,7,10/, Markowitz sum = 9
compse!, = {2,3.57], Markowitzsum = 7
compscty = (2,39}, Markowitz sum = 14
compset, = [2.34,5], Markowitz sum = 6

compset, = [1,2,3,7,10], Markowitz sum = 9
compsetg = [1,2,3,7,10], Markowitz sum = 9
compset, = [1,2,3,10], Markowitz sum = 6
compsety = (1,2,3.4,9], Markowitz sum = 14

The Ordered Compatibles and Their Markowitz Sum Number
Figure 4.3

To produce the starting sets at ULEVEL, processes are assigned to the
nodes of the partial binary tree from the root to level ULEVEL-1. A process can-
not start to split a set until the set is produced by the parent process. To accom-
plish this, a lock is assigned to each set from the root to ULEVEL-1. The lock is
initialized to false except for the root set. As soon as a process has completed gen-
eration of a child set, it sets the lock for the child set to true allowing the next
process to proceed. This is done by selfscheduling processes over the work. Pro-
duction of starting sets as described above is embodied in the first self-scheduled

loop in the algorithm below.
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Procedure Compset

Global {lock(naset); nset :number of sets from root to ULEVEL ~1.
Global imptbl(1,n) set of 1..n;

Global $(1..2X nset);

Global compst(1,nset) set of 1..n;

Local less set of 1..n;

Local tempset set of 1..n ;

Selfsched DO 3 §= 1, (2(VLEVEL-1) — )
wait until lock(s) true;
take the next pivot, P, with lowest
Markowitz number to split set, :
produce left set, set lock(2X 1) to true;
produce right set, set lock(2Xs+1) to true;
End Selfsched DO
Barrier
End barrier
For each starting set, S,, produce an ordered compatible, compset;

Presched DO j= 2ULEVEL=1 gULEVEL —
compset;, = emply
less = §— 5,
for j= n down to 1 do
begin
if ( P;e S;)then
begin
tempset = imptbl, — less
tempset = tempaet [} compaet,
if ( tempset=empty ) then
compset; = compaet, + [P,]
end
end

find a local maximum.
End Presched DO

Critical * max

find a global maximum
End critical

Generation of ordered compatibles is done by prescheduling processes over
the sets at ULEVEL. Each process is responsible for keeping an updated copy of

the ordered compatible of maximum size and minimum Markowitz sum it pro-

3 A process takes the next unassigned value of i a8 soon as it is free. This tends to even the work load
over processes when the execution time of the loop can vary significantly for different i values.

4 Mutual exclusion is accomplished by critical sections, begun by s Critical statement and ended by
End critical.
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duces. In order to do this, processes execute a section of code to obtain a local
maximum. After processes have completed the execution of the prescheduled loop

body. they execute a critical section to obtain a global maximum (elimination set).

Production of K starting sets for a given ULEVEL takes a constant time.
For ULEVEL small and constant c.onllpared to n, generation of
ordered compatibles from starting sets is of order n set intersection and difference
operations. Assuming efficient implementation of the set operations is available,
Ofsetop), the heuristic algorithm has a complexity of O(K-n-setop), where setop
can be assumed to be constant. Employing NPROC processes will reduce the exe-
cution time of the second prescheduled loop by 1/NPROC. Of course, the com-
plete execution time cannot be improved by 1/NPROC because of the synchroni-

zation code used in waiting for locks to become true in the barrier code and in the
critical section to find a global maximum. As ULEVEL is increased the number of
parallel processes that can be effectively used increases but at the same time the
complexity of the algorithm will increase. It is important to choose ULEVEL such
that the amount of parallelism provided by the underlying hardware is effectively

exploited to speed up the execution time and not to add to its size.

4.4. Numerical Stability and Trade off Parameters A test for numerical
stability is done by prescheduling processes over the parallel pivot candidates in
the elimination set. Each process searches its pivot column for the maximum

entry, Vmaz. A pivot is numerically stable if:

pivot tolerance < |pivot value| and

u X |Vmaz| < |psvot value|

pivot tolerance and u are user defined values which define the desired accuracy. If

a pivot does not satisfy the test, it is discarded from the elimination set. When no
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more parallel pivots exist, i.c. the single pivoting loop, if unstable pivots are still
present an acceptable pivot is obtained by a complete pivoting strategy. Thus an
upsymmetric permutation is performned to put the matrix in the new pivot order.
Note that for matrices in which diagonal pivoting becomes impossible at an early
stage during the decomposition, it is possible to switch to single pivoting code for
a few steps. [\)uriug single pivoting steps unsymmetric permutations are possible
and will change the matrix structure. So parallel steps may become possible
again.

In previous papers we have shown that it is possible to minimize genera-
tion of fill-ins significantly by reducing the amount of parallel work slightly

according to some criteria 2], [3], [4]. Trading off parallelism for fill-in is done

according to the size of the elimination set and a number of parameters:

1. Shrinkage parameter: By allowing a small percentage of the elimination set
to be discarded we can control the number of compatible pivots to a degree

that does not limit our parallel work by too much.

2. Upper limit parameter: This limit would allow just enough parallel work to
keep our parallel processes busy.

3. Threshold parameter: In shrinking the size of an elimsination set only pivots
with Markowitz number higher than a threshold value in the ordered list of
pivots may be discarded. Pivots with low Markowitz numbers do not tend to

generate many fills and need not be discarded.

If trade off is possible then pivots are discarded from the elimination set
asynchronously by parallel processes. Of course it is not necessary to use a very
tight synchronization. It is possible to calculate the number of pivots with the
highest Markowitz number to shrink the elimination set and to let parallel

processes to discard these pivots without synchronization. This approach is more
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parallel but less fiexible on the «ize of the resulting elimination set.

4.5. Parailel SWPSV Once par;lle! pivots are determined the macrix is per-
muted to the new pivot order. The permutation information is saved in procedure
SWPSV. The destination addresses of parallel pivot candidates are stored such
that at each parallel step rows and cclumas are swapped only once. At each step
indices of pivots in the elimination set are checked against the upper left hand
corner of the unreduced matrix. Let nrem be the index of the next row toc be
reduced in the remaining unreduced matrix. Let npiv be the number of pivots in
the elimsnation set. If i is the index of a pivot in the elimination set, then if
i < nrem + npiv - 1

there is no need to permute row and column i. Therefore pivot i can be marked to
avoid unnecessary permutations. This is accomplished in a prescheduled do loop
over the pivots in the elimination set. Having identified the necessary permuta-
tions, the required information is stored in permutation vectors in a self-scheduled
loop. Each process obtains the index of a row to be swapped and updates the
corresponding entries in the permutation vectors. This is a simple routine and is
parallelized over the compatible pivots in the elimination set(npiv). The order of
the sequential routine is O(npiv), since it only involves exchanges of entries in the

permutation vectors for parallel pivot candidates.

4.6. Parallel SWPROW The actual permutation of rows and columns is per-
formed by routines SWPROW and SWPCOL. Parallelism could be most effective
if rows of the parallel pivots are completely permuted first followed by column
permutations. A single step row-column permutation would involve many changes

in the row and column lists of the matrix structure and would require tremendous
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amount of synchronizing code Thus SWPROW permutes all the pivot rows in
parallel, and SWPCOL permutes all pivot columns. Barrier syuchronization is
necessary in between the calls to the two routines. These routines are symmetric

in the function they perform. so only SWPROW is described.

The rows and columns of the pivots in the elimination set are to be per-
muted with others in the remaining matrix such that the matrix is in thé pivot
order with any ordering of elements within an eliminationset. In permuting paral-
le! pivot rows the next row pointer and the row index fields must be updated. So
after all parallel pivot rows are swapped with their destination rows, each column
of the matrix will be in increasing order of row indices obtained from the permuta-
tion vector. This suggests that we can sort the columns of the matrix according to
the new ordering given by the permutation vector. Of course not every matrix
column has to be sorted. Ounly columns having a nonzero element in any of the
rows involved in permutation must be sorted. Therefore by constructing a bit
vector which is the result of the union of the boolean vectors corresponding to the
permuting rows (parallel pivot rows and their destination rows), we gather the
indices of columns to be sorted. Construction of the boolean vectors for parallel
pivot rows and their destination rows is dome in parallel be prescheduling
processes over these rows. The union operation is then performed sequentially.
Note that the union could be done in parallel using a parallel tree sum computa-
tion method. This would involve much storage for the intermediate results but
would speed up the operation.

Next, every column having bit position in the resulting bit vector set must be
sorted. Each column consists of very few nonzero elements due to the sparsity of
the matrix and hence a simple bubble sort can be used efficiently to sort the
columns. The sorting of columns are independent operations and caﬁ be done

simultaneously by parallel processes. This is done by self-scheduling the processes
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over the work. Each process exccutes a small critical section to obtain the index

of the next column to be sorted. The algorithin description follows:

Procedure SWPROW

Global brow: array|l .2X npsv] of sets;
bit vectors of rows to be permuted.
Global colindez: sels; bit vector of column indices
to be sorted.

Presched DO s=1, 2X npyv
(initialize the boolean vectors)
brow(s)=0
End Presched DO
Barrier
End barrier
Presched DO i=1, 2X npiv
obtain index, j, of the row to be permuted.
scan row j and for each nonzero g,
add k to brow(s)
End Presched DO
Barrier
colindez= brow(1){J brow(2)J - - - |J brow(2X npiv)
End barrier
sortnext:
Critical nertcol
get a local column index, g, from colindez to be sorted.
End critical
if (J 1s a valid index) then
bubble sort column ; using the information
from the permutation vector.
go to sortnext
endif

The sort is O(nz?), where nz is an average number of nonzeros per row or
column. The sort must be done for all columns in the colindez vector. This
number is usually a multiple of nz, say A'nz, and in the worst case could be n, the
order of the matrix. [t also involves the set operations union and the pext element
from colindez which is impleqlentation dependent. The next element operation is
performed within the loop and can be done in O(1). Thus on the average the
number of operations in this routine is of order of:

O(Kn2?)
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If K nz parallel processes exist, SWPROW can be done in time O(nz)?.

4.7. Parallel reduce The numerical decomposition and insertion of fill-ins for

the elimination set is parallelized by self-scheduling processes as follows:

The reduction of each row for a pivot in the elimination set is performed
by a parallel process. If no more rows are left to be reduced for this pivot, the
reduction process for the next row can be started by parallel processes looking for
more work. The logic to do this is contained within a critical section of code. A
process obtains a local pointer to the next row having a nonzero in the pivot
column it is processing, advances the global pointer and exits the critical section.
If no more rows are left to be updated for the pivot under consideration, the pro-
cess advances a global pointer to the next pivot in the elimination set and obtains
the next row pointer for the new pivot in the same manner and exits the critical
section. Thus processes work in parallel over rows of a single pivot first and over

the parallel pivot candidates in the elsmination set next.

Each process is responsible for dividing the nonzero element in the pivot
column by the pivot and subtracting a multiple of the pivot row from the row, j,
being updated. The process must also check for a possible fill-in and insert it if
necessary. The search for a possible fill-in must be done atomically so that paral-
lel processes do not try to insert the same element in the same position with
different values. Means must be provided to allow only one process to insert a
fill-in a; and others to update the element after it is inserted. This can be done
by locking the row j and column k of the matrix such that it can only be searched
by one process at a time. The locking of a row and column is done by a critical
section on elements of two asynchronous arrays, one for rows and one for columns.

Any two shared arrays, for example nofr and nofc, that are not used throughout
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this process can be used for this purpose. Of course only one element can be
inserted in the matrix striucture at a time since the insertion causes changes in the
pointer structure for rows and columns other than j and k alone. It is important
to note that the probability of searching for the same element by more than one
process at the same time is very low. The synchronization described above is
necessary for correct solution and does not increase the execution time by much.
The updating of an element must also be done atomically by processes. Again the
probability of more than one process trying to simultaneously update the same
element is low. This synchronization can be done by simple scoreboarding which

must be available in machines matching our computational model.
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Procedure reduce

Barrier
it ~ index of the first pivot ia the ordered matrix.
Eud barrier
getworhk:
Critical nezt
(get next parallel work)

&

=4 local pivot index
(get a local row index to be reduced)
local:

j=neztrow in pivot colume ¢
if{ 7 not valid) and (more pivots) then
begin
s=4+1 ; advance to the pext pivot and update
ss=¢ , the global pivot pointer.
goto local; get the next row.
endif
update global neztrow pointer information.
End critical
if( 5 valid) then
begin
a,, = d)"'/d,','; divide by inOt
scan pivot row s and for each ay:
(check for a possible fill-in)
(lock row j and column & )
Critical nofr(y)
Critical nofe(k)
if(a;; not in matrix) then
Critical insert
insert the element
End critical
End critical
End critical
atomically update ay
ajy=0ay; — a,Xa;
goto getwork
endif

Reduction of the matrix for a single pivot requires a complete scan over
the matrix whit.:h can be done in time NZ. For npiv pivots the time would be pro-
portional to npiv-NZ. NZ changes as fill-ins are encountered or as the matrix gets
smaller due to the reduction. Duff [4] reports that over a wide variety of matrices,
the number of arithmetic operations performed has been empirically observed to
be about 7%/4n where T is the number of nonzeros in the decomposed form. The

value of 7 is generally not known a priori. Experience has shown that a value
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5/2NZ is a satislactory estimate for 7 although an estimate of order nlog n iy more

realistic for problems arising from PDEs in two dimensions.

. Implementation Results The program is implemented for the HEP {Hetero-
geneous Element Frocessor) pipelined shared-memory computer built by Deneicor,
Inc. {22]. The results prescnted here are on a single PEM (Process Execution
Module). The> execution pipeline on the HEP has eight steps. In the HEP the
degree of simultaneous execution is limited by the length of the various pipelines
and may be characterized by an average pipeline length. Thus on a single PEM a
program may be expected to speed up by no more than 7.5 to 9.5 over single
stream execution. The LU Decomposition program has also been simulate_d on a
Vax 11/780 and tested on many application matrices arising from electronic cir-
cuits and structural analysis producing successful results {2], [3], [4]. Here we
represent the timing results of running the program over a 144 by 144 matrix from
the circuit of an 8-bit full adder and employing different values for trade off
parameters. Figure 5.1 represents the execution time of LU Decomposistion pro-
gram for different numbers of processes from 1 to 25. The result is for the case
when maximum parallelism is used. For NPROC=1, the matrix is completely
reduced in 10 parallel steps. The number of compatible pivots at each step is 72,
25, 16, 11, 8, 5, 3, 2, 2, and 1 respectively. Note that in the first step half of the
matrix is reduced in parallel. The execution time decreases with an increase in the
number of processes up to NPROC=11. In fact there is 1/NPROC reduction in
execution time for small values of NPROC as new processes make efficient use of
the execution pipeline. This decrease in execution time bottoms out as the pipe-
line becomes full. The slope of the linearly rising tail of the curve indicates the

length of time spent in critical sections in various points in the program. A com-
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plete model for analysis of parallel programs can be found in [23]. Defining the

speed up to be:

T(1
T(NPROC)

where T(1) is the time to execute the program with one process and T(NPROC) is

S =

the same time using VPROC processes. Then a speed up of 4.82 is obtained for 11
processes. Note that this is not speed up measured with respect to the best

sequential algorithm, but only gives insight to the parallelism in this program.

For a small number of processes, execution time versus number NPROC

of processes can be represented as:

+—C2
'" NPROC

where C, represents the sequential portion of the work and C, the parallel por-

T(NPROC) = C

tion. A simple least squares fit to determine C, and C, is applied to a linear por-
tion of the execution time versus NPROC curve to estimate the degree of parallel-
ism. This analysis shows that the code is 87% parallel. Figure 5.2 shows the exe-
cution time versus NPROC for individual routines. As can be seen there is a
sharp increase in the slope of the sort curve for large NPROC which indicates
parallel processes spend more time in the critical section than doing useful parallel
work. Of course a reason for this behavior is the small value of NV, order of the
matrix. As NN increases the slope becomes smaller. A speed up of 3.3 for 8
processes is obtained for the sort. The degree of parallelism for this routine is
58%.

For the Compset routine speed up is 5.7 for 18 processes, and the code is 93%
parallel. Here the value of ULEVEL is 4, so there are 18 starting sets for which an
ordered compatible must be produced in parallel. Therefore every time number of
active processes divides 16 evenly a sharp decrease in execution time is observed.

Speed ups for reduce and SWPROW are 4.4 for 11 processes and 6.5 for 12
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processes respectively. The degree of parallelism for these two routines are 840
and 93% respectively. Our numerical results abeut number of availabic pacaiiel
pivots indicate the existence of muly parailel operations and it is clear that by
moving to computers with more parallel units or PEMs in the case of HEP a

higher degree of parallelism can be achieved.

The program is nondeterministic when executed in parallel. In many cases
there are several sets of equai maximum size and minimum Markowitz sum.
Depending on the number of processes and their relative speeds, one of the candi-
date ordered compatibles will be selected as the elimination set. Thus different
results are produced. The number of fill-ins generated for single stream execution
is 280. For different values of NPROC this number is in the range of 89% to
103%% of the fill-ins produced sequentially.

Table 5.1 shows the result of running the program on the same matrix when trade

off parameters are used. The values of parameters for this case are given below:

Threshold 1/3

Shrinkage Parameter  30%%

Upper Limit 25
ULEVEL 4
Table 5.1
Routine NPROC Speed up

LU Decompose 9 5.81
Batcher 7 3.5
Compaet 18 6.1
SWPROW 14 6.54

reduce 9 4.15
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The higher speed up indicates that by employing the above parameters a better
balance between number of compatible pivots generated at different steps is
achieved. A reduction of 237 in ll is ubtained as the result of the above parame-
ter variations which compares reasonably with results from the best sequential
program (166). The fill-in can further be decreased by assigning different values to

trade off parameters.

The results of running the program on a 505 by 505 matrix produced from
SPAR, a structural analysis program [24] is given in Figure 5.3 and 5.4. In the
HEP, for every new process a local stack area is allocated. This area depends on
the amount of local storage and some other system parameters. Due to the limited
size of the available memory the program could only be run on this matrix for up

to 7 processes. The trade off parameters for this run have the following values:

Threshold 2/3
Shrinkage Parameter  40%
Upper Limit 60
ULEVEL 4

Using a least squares fit the degree of parallelism for each routine is summarized in

Table 5.2.
Table 5.2
Routine Degree of Parallelism
LU Decompose 95%
Batcher 93.37%
Compaset 91.45%
SWPROW 92.22%

reduce 85.44%



EXECUTION TIME

70.00C

60.000

50.000

40.000

30.000

20.000

32

(SECONDS)
C@MPSET %
ﬁo anPSE
- S@RT .
1 SHPREOW 0
- RECUCE 9
A
}-
- o
X
-
L o 0
i 0
r X
- -
- X 0 0
}-
- T X
- Cra
[ VR TS O S S VN NN G U PO NN TR NS DA NN NN IS S S NN BN I SR B
0. 10 15 20. P 30
NPROC
Figure 5.3 Execution Time vs. Number of Processes

for Individual Routines

ULEVEL =4, Shrinkage=40%, Upper Limit=60, Threshold=
505 505, NZ=5889, from SPAR Program 3



33

EXECUTION TIME

(SECONDS)

170.000 PARALLEL PIVBTING +

160.000 [-¥ REDUCTIN X
150.000

140.000

130.000

120.000

110.000

100.000 X

90,000

80.000

70.000

60.000 £ .
50.000

40.000 X
30.0C0

20.000 R

10.000

0.

NPROC

Figure 5.4  Execution Time vs. Number of Processes
Comparison of Parallel Pivoting and Reduction
ULEVEL =4, Shrinkage=40%, Upper Limit =60, Threshold=2/3
505% 505, NZ= 5889, from SPAR Program



34

The 93% parallelism from the sort indicates that, for large values of N, parallel
processes spend more time performing parallel operations than in the critical sec-
tion.

Figure 5.4 compares the total execution time spent in routines to find the parallel
pivoting candidates and execcution time of the rest of the program for LU decom-
position. As can be verified from this figure the time spent to find the parallel
pivots is much less than the time to perform the decomposition. This difference
increases as the size of the matrix becomes larger, verifying the advantage of

parallel pivoting.

8. Conclusion A set of parallel algorithms for performing LU decomposition of
general unsymmetric sparse matrices for shared-memory MIMD computers has
been presented. The sparse LU decomposition technique employs a parallel pivot-
ing strategy to solve the problem of having enough parallelism in sparse matrices.

The main features of the heuristic algorithm can be summarized as follows:
-It can identify a good set of parallel pivots in linear time.

-It is a stepwise algorithm and can be applied to any submatrix of the ori-
ginal matrix. Thus it is not a preordering of the sparse matrix and is applied

dynamically as the decomposition proceeds.

-Pivots can be tested for numerical stability and unsymmetric permuta-
tions can be performed if necessary.

-Trade off between parallelism and fill-in is possible under several program
controlled parameters.

-The information produced by the algorithm can be stored to decompose

structurally identical matrices.
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We have presented the parallel reduction combined with parallel pivoting
technique, control over the geacration of fills and check for numerical stability, all
done in parallel with work being digtributed over the active processes. The pro-
gram verifies that it is actually possible to do parallel pivoting in sparse matrices
on multiprocessors and take advantage of the existing parallelism in the problem
and in the hardware. The timing analysis of the routines indicate that every rou-
tine has been effectively parallelized. The small slope in the execution time versus
number of processes of LU/ Decomposition program which represents the amount
of synchronization overhead verifies the effectiveness of parallelization and

machine utilization.
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